Normal operations cease during the long arctic winter. Ice can choke the Beaufort and Chukchi Seas from November through June. Days per year when even trying open water cleanup is possible. Even then it is not very effective.

Minimum temperature in the Arctic in October. Common response methods—dispersants, booms, and burning—lose effectiveness in the cold.

Maintaining essential infrastructure in the region to accommodate this potential threat is another consideration.

Keep it under the sea.

Already over CO₂ budget

New Arctic Ocean oil and gas leases would pave the way for the release of millions of tons of CO₂ into the atmosphere. Leaving those hydrocarbons under the seafloor is imperative if the U.S. hopes to achieve its international climate commitment of limiting temperature rise to 2°C. Importantly, leading scientists agree that 1.5°C is a more appropriate goal to avoid the worst impacts of climate change.

FAR TOO RISKY

Major oil spills are a near certainty for Arctic drilling. For example, the U.S. government estimates a 75% chance of one or more major oil spills if development moves forward in the Chukchi Sea. Yet there is no proven technology to contain or clean up oil spilled in the Arctic marine environment.

No emergency response infrastructure on America’s Arctic coast

There are no emergency response bases in the region. The nearest is on Kodiak Island, 1,000 miles away by air or 2,000 miles by sea.

Extreme conditions

Normal operations cease during the long arctic winter. Ice can choke the Beaufort and Chukchi Seas from November through June. Days per year when even trying open water cleanup is possible. Even then it is not very effective.

Minimum temperature in the Arctic in October. Common response methods—dispersants, booms, and burning—lose effectiveness in the cold.

Projected U.S. fossil fuel production

Quadrillion Btu (QBlu)

Not yet leased federal production (including Arctic)

Range of maximum U.S. fossil fuel production levels consistent with U.S. 2°C climate protection commitments.

Shifting sea ice

Sea ice is a significant impediment to drilling in the arctic. Constantly moving in response to wind and currents, sea ice occurs in complex combinations of form, thickness, and surface coverage.

Oil can pool under multiyear ice, finding its way to the surface through natural fissures. As ice forms in open water, it traps oil and hinders skimming. Freezing solid, ice encapsulates oil.

As ice melts in spring, trapped oil migrates up channels and pools in meltwater ponds.

Sources: Stockholm Environment Institute; Bureau of Ocean Energy Management; Nuka Research & Planning; Center for American Progress; Pew Environment Group; World Wildlife Fund